

2nd Seminar – Delft, the 6th December 2022

Transformation to the manufacturing of new magnets

Boris SAJE – KOLEKTOR Cyril RADO - CEA

SUMMARY

- 1. Powders production for the bonded magnet manufacturing route
- 2. Bonded magnets manufacturing
- 3. Sintered magnet manufacturing route

POWDERS PRODUCTION FOR THE BONDED MAGNET MANUFACTURING ROUTE

- Hydrogen Decrepitation (HD) to transform magnets into coarse powder
- Hydrogenation Disproportionation Desorption Recombination (HDDR) to obtain powders with good magnetic properties
- Objectives : Production of several kilograms of powder to check whether this powder can be processed for manufacturing bonded magnets

This route has been experimented on different magnet sources

- 1) N38 magnets : relatively clean batch of large magnets
- 2) Hard Disk Drives magnets : batch of small magnets with organic residues

POWDERS PRODUCTION FOR THE BONDED MAGNET MANUFACTURING ROUTE

N38 magnets Epoxy coating removed 6 cm × 6.3 cm - 380 g 1 composition

HDD magnets Metallic coating to be removed Small magnets, residues, ... Different compositions

POWDERS FOR THE BONDED MAGNET MANUFACTURING ROUTE : N38 MAGNETS

- Small sample of N38 magnets P_{H2} = 0.8 bar
- Powders sieved at 200 μm
- Best magnetic properties : HDDR process at 880°C, but the powders are difficult to deagglomerate
- HDDR process at 840°C : good magnetic properties and easy to deagglomerate

Т (°С)	Br [T]	Hcj (kA/m)	Powder Loading rate	Br (T) Extrapolated
820	0,41	650	0,50	0,81
840	0,38	1040	0,50	0,76
860	0,38	1110	0,49	0,79
880	0,41	1180	0,54	0,76
920	0,40	880	0,55	0,73

POWDERS FOR THE BONDED MAGNET MANUFACTURING ROUTE : HDD MAGNETS

Ē

- HDDR process : best process conditions determined previously with N38 magnets
- HDDR Powders from "<u>as received" HDD magnets</u>: 840°C and 860°C
- HDDR Powders <u>only with HDD magnets</u>: 840°C, 840°C and 860°C
- Very poor magnetic properties for as received magnets – No difference between 840°C and 860°C
- Poor magnetic properties when only magnets are selected – Small difference between 840°C and 860°C

H [kA/m]

POWDERS FOR THE BONDED MAGNET MANUFACTURING ROUTE : HDD MAGNETS

			0	С	S
• Ve m	Very poor magnetic properties for the "as received"		(ppm)	(ppm)	(ppm)
	magnets – High contamination of the powder by O, C and S	As received magnets	5820	1340	145
•	Poor magnetic properties with only magnets selected – High contamination of the powder by O, C and S	Only magnets	5560	1140	85

An additional cleaning of the magnets before the HD + HDDR treatments could reduce the carbon and oxygen content in the HDDR powder

but less than the "as received" magnets

POWDERS FOR THE BONDED MAGNET MANUFACTURING ROUTE

- Particle size distribution required by KOLEKTOR
- Coercivity is 30% lower than obtained, previously with small samples

POWDERS FOR THE BONDED MAGNET MANUFACTURING ROUTE : CONCLUSIONS

- 15.4 kg of used N38 magnets and 6.1 kg < 200 μm : **40% of the powder can be recycled**
- Efficiency could be improved by grinding the powder with a grain size > 200 μm
- N38 magnetic properties : Coercivity and squareness could be increased by improving the HDDR cycle
- An **additional cleaning** of the HDD magnets before the HDDR treatment could reduce the carbon and oxygen content in the HDDR powder

BONDED MAGNETS MANUFACTURING

Work done for polymer bonded preparation (scope)

- Selection of magnetic powder
- Selection of polymer
- Selection of additives Test compounding on HDDR powder (CEA powder)
- Test moulding (CEA powder)
- Measuring set up parameters for CEA powder (to define technological parameters)

Results achieved

- Mechanical properties
- Magnetic properties
- Corrosion resistance

BONDED MAGNETS MANUFACTURING : COMPOUNDING PARAMETERS

- Torque: between 30 and 40 Nm (more than previous (25Nm))
- Temperature: in the range
- Pressure 2.4 bar (good)
- Moulding temp: 290°C
- Tools temp: 90°C
- Injection pressure:2400 bar (higher than previous which was 1050 to 1150 bar)
- Holding pressure:1400 bar (higher than previous, which was 900 bar)
- Field: 0 and 500 mT
- Magnetised axially
- Energy input: 12 kWs
- U = 1800 V (magnetising voltage)
- I = around 13 kA
- H = 2200 kA/m (calculated)

BONDED MAGNETS MANUFACTURING : DEMAG CURVES

RawMaterials

eit

BONDED MAGNETS MANUFACTURING : DEMAG CURVES

Anisotropic: 2 Average 1 = 512.0 514.2 513.1 mT Br (BH)max = 43.72 44.09 43.91 kJ/m³ = 311 312 kA/m H_{cB} 312 = 707 707 707 HcJ kA/m Ba = 0.268 0.271 0.270 Т Ha = 163 163 163 kA/m = 0.461 0.463 0.462 Jk Т kA/m Hk = 193193 193 Hmax = 1267 1265 1266 kA/m = 23 23 23 °C Т

BONDED MAGNETS MANUFACTURING : MECHANICS

Mechanics (bending):

name	Em [N]	sFmax [mm]	h [mm]	b [mm]	l [mm]	σfB [MPa]	E(b) [MPa]
Test 1	166,137	1,683	3,07	10,09	80,00	104,821	7189,991
Test 2	168,212	1,707	3,07	10,09	80,00	106,131	6780,015
Test 3	169,449	1,757	3,07	10,09	80,00	106,911	6839,373
Test 4	165,355	1,648	3,07	10,09	80,00	104,328	7607,831
Test 5	171,452	1,784	3,07	10,09	80,00	108,175	7575,759
Test 6	169,821	1,771	3,07	10,09	80,00	107,146	7684,205
Test 7	170,104	1,744	3,07	10,09	80,00	107,324	7059,406
Test 8	167,163	1,691	3,07	10,09	80,00	105,469	7536,835
Test 9	168,944	1,749	3,07	10,09	80,00	106,592	6836,466
Test 10	167,313	1,664	3,07	10,09	80,00	105,563	7248,407

name	Fm [N]	sFmax [mm]	h [mm]	b [mm]	l [mm]	σfB [MPa]	E(b) [MPa]
MW	168,395	1,720	3,07	10,09	80,00	106,246	7235,829
s	1,908	0,047	0,00	0,00	0,00	1,204	350,143
MIN	165,355	1,648	3,07	10,09	80,00	104,328	6780,015
MAX	171,452	1,784	3,07	10,09	80,00	108,175	7684,205

RawMaterials

eit

BONDED MAGNETS MANUFACTURING : CORROSION RESISTANCE RELATED

Magnetic flux:

Injection moulded HDDR + PA									
Tests	Std	Conditions	duration	I mass s (g)	I flux s (10-6 Vscm)	l mass e (g)	d mass (%)	l flux e (10-6 Vscm)	d flux (%)
Unbiased Autoclave Test	EIA JESD 22-A102-C	121 °C · 2,05 bar · 100 % rH	24 h	2,71	14,72	2,72	100,36	14,27	96,94
Temperature humidity bias life test	EIA JESD 22-A101-B	85 ℃ · 85 % rH	24 h	2,73	14,74	2,71	99,26	14,31	97,08
Salt spray test	DIN EN ISO 9227 SS	35 °C · 50 g/l NaCl- solution	24 h	2,71	14,71	2,72	100,36	14,7	99,93
Condensation moisture test (condensation climate with alternating humidity and air temperature)	DIN EN ISO 6270-2 AHT	40 °C · 100 % rH, 18-28 °C · < 100 % rH	8 h, 16 h	2,69	14,72	2,7	100,37	14,73	100,06

eit

BONDED MAGNETS MANUFACTURING CONCLUSIONS

- Magnetics for first tests surprisingly good
- On a parr with isotropic standard NdFeB
- Mechanics completely comparable to standards
- Processes well (extrusion and injection moulding)
- Corrosion properties comparable to regular

Suggestion: Shift demag curve towards higher Hk

SINTERED MAGNET MANUFACTURING ROUTE

- Melting EOL magnets
- Casting of an ingot
- Production of new ribbons incorporating the recycled ingot + virgin materials to correct composition shift
- Sintered magnet fabrication following the standard route

This route has been experimented on two magnet sources

- 1. N38 magnets : relatively clean batch of large magnets
- 2. Hard Disk Drives magnets : batch of small magnets with residues

SINTERED MAGNET MANUFACTURING ROUTE : MELTING OF N38 MAGNETS

SINTERED MAGNET MANUFACTURING ROUTE : RECYCLED N38 ALLOY

Induction furnace : 15 kg Composition : N38 magnets

- Recycled materials (SC42 ingot) : 6.5 kg (43%)
- New materials : 8.5 kg (57%)

SC46 ribbons

the alloy is completely melted

•

SINTERED MAGNET MANUFACTURING ROUTE : MAGNETIC PROPERTIES

SC46 ribbons → powder (5 μm particle size) Sintering : 4h – 1050°C Annealing : 2h 850°C – 2h 520°C Comparison SC46/N38 Same Remanence Coercivity of N38 depends on TT S46 coercivity 10% higher

SINTERED MAGNET MANUFACTURING ROUTE : CHARACTERIZATIONS

IGA analysis

	O (ppm)	C (ppm)
N38 magnet	3400	840
SC46 ribbons	70	400
SC46 magnet	3000	740

SC46 ribbons : 43% of recycled magnets Strong reduction of O content but **no reduction of C content**

C and O magnet contents close to N38 magnet contents

Microstructure

N38 magnet : grain size > 10 μm

SC46 magnet : small grain size $< 10 \ \mu m$

Better coercivity for SC46 magnets could be explained by the microstructure difference

SINTERED MAGNET MANUFACTURING ROUTE : HDD MAGNETS

"As received" HDD magnets

Thermal pyrolysis of organic materials

Clean magnets after removal of carbon

formed during thermal pyrolysis

SINTERED MAGNET MANUFACTURING ROUTE : MELTING OF HDD MAGNETS

Melting of HDD clean magnets in the strip-casting furnace : SC52

SINTERED MAGNET MANUFACTURING ROUTE : MASS BALANCE AND IGA

Crucible

Spout

			Arter c	asung	
	Crucible		3.30 kg	28 %	
	Tundish		0.30 kg	3 %	
	Ingot		8.06 kg	69 %	
	Total weight	-	11.65 kg	100 %	
IGA			O (ppm)	N (ppm)	C (ppm)
Crucible			15200	470	880
Spout			980	26	900
SC52 Ingot			280	20	880

After casting

SC52 Ingot

SINTERED MAGNET MANUFACTURING ROUTE

<u>Ref</u>	erence = Industrial NdFeB alloy : 43UH-1	43UH-1 COMPOSITION %		
1.	Jet Milling and sintering	TRE	30.76	
2.	Magnetic properties and chemical analysis of magnets	Nd	21.73	
		Pr	5.47	
CF/	NdFeB allow : we targeted the 13LIH-1 composition	Dy	3.53	
		В	0.98	
1.	Chemical analysis (ICP and IGA) of SC52 ingot from HDD magnets	Со	0.90	
2.	50% Recycled magnets (6 kg SC52 ingot) + 50% new materials (6 kg)	Cu	0.07	
3.	Strip-casting SC54 : ribbons	AI	0.23	
4.	Jet Milling and Sintering	Ti	0.05	
5.	New magnets : Magnetic properties and chemical analysis	Ga	0.15	
0.		Zr	0.02	
		Fe	66.84	

SINTERED MAGNET MANUFACTURING ROUTE

43UH-1 and SC54 magnets : magnetic properties and chemical analysis

- Insufficient densification for SC54 magnets : lack of rare earths + more impurities
- The percentage of end-of-life magnets (50%) should be reduced

SINTERED MAGNET MANUFACTURING ROUTE CONCLUSIONS

- We have demonstrated that it is possible to manufacture sintered magnets from end-of-life magnets using industrial processes or that can easily become industrial processes.
- Two types of magnets were treated.
- The melting process reduces the amount of oxygen that is trapped as rare-earth oxide in the crucible. The RE oxides can be recycled using the hydrometallurgic route.
- The problem of **high carbon content** in recycled magnets from HDD magnets can be solved by:
 - 1) a better cleaning of the magnets
 - 2) reducing the proportion of end-of-life magnets to produce new NdFeB alloy
 - 3) increasing the amount of rare earth in the NdFeB alloy

