

UPGRADE

Upscaling of a strip-cast process for heavy rare earth lean magnet grades

Sorana LUCA, <u>Cyril RADO</u> - CEA-LITEN

December 06th 2022

Rare Earth permanent magnets - context

- ➤ NdFeB permanent magnets = the highest energy product of any available material today
- ➤ They can be found in a variety of applications: high performances motors, magnetic separation, generators, magnetic resonance imaging
- ➤ The combination of the needs from the mobility sector and from the renewable energy production leads to a strong supply risk in the near future
- ➤ Most of the requirements for traction motors are targeting the highest coercivity grades still using high amount of heavy rare earth elements (Dy or Tb)

Rare Earth permanent magnets - context

Current technological challenges in permanent magnet industry:

- > Heavy rare earth reduction: grain size reduction, grain boundary engineering, grain boundary diffusion
- > Recycling of permanent magnets
- > Substitution of rare earth elements: rare earth lean permanent magnets
- ➤ Material savings new design

UPGRADE - Upscaling of a strip-cast-process for Heavy Rare Earth - lean magnet grades

➢ Goal:

- ➤ the development of a strip-cast process with improved casting conditions and alloy composition for a Dy-reduction of up to 2.5 wt.% in a fine-grained magnet
- > upscaling of the strip-cast process to production volume
- ➤ <u>Advantage:</u> the results can be easily implemented at industrial scale, as the process used at pilot scale is similar to the one used at large scale in magnet industry => no need for additional equipment costs.
- > Six partners covering the three corners of the knowledge triangle
- Coordinated by CEA
- > Timeline: 01/2019 12/2021
- ➤ Bugdet: 1.9 M€

The conventional powder metallurgy process for the manufacturing of high performance NdFeB permanent magnets: CEA-LITEN's pilot plant

STRIP CAST FACILITIES - PILOT SCALE

Stripcasting of Nd-Fe-B alloys. The alloys are cast onto a rotating copper wheel to achieve rapid cooling rates which enables the creation of fine grained microstructure.

Flakes and flake's microstructure obtained by SC

Strip cast equipment installed in CEA - pilot scale

UPGRADE's key results

CEA/LITEN SC - 10-50 Kg per batch

Role of crucible rotation speed

Std SC conditions

Nd Rich spacing= 3.2 µm HcJ @ 150°C (avg) = 630 kA/m

Nd Rich spacing= 4.5 µm HcJ@ 150°C (avg) = 680 kA/m

> Key results:

- √ Two Nd-Fe-B alloys at pilot scale (15 kg/batch) allowed to achieve the target (reduction of 2.5 wt. % of Dy)
- √ Two batches of Nd-Fe-B alloys at industrial scale (600) kg/batch) have been produced within the project timeline

Role of alloying elements (under IP protection)

Add. elts	A	В	A + B
Coercivity @ 150°C (avg)	608 kA/m	656 kA/m	671 kA/m

SUCCESSFUL TRANSFER TO PRODUCTION VOLUME

CONCLUSION

- The PM are in the heart of the energy transition
- ➤ UPGRADE project have demonstrated the possibility to reduce the heavy rare earth content in NdFeB high performance permanent magnets by an optimization of the alloys microstructure and composition
- The **pilot lines** play an important role to establish <u>innovative technologies</u>, <u>easily implementable in industry</u>

Thank you for your attention

Sorana LUCA

Research Engineer at CEA-LITEN

sorana.luca@cea.fr

Commissariat à l'énergie atomique et aux énergies alternatives - www.cea.fr