The Critical Role of Materials in the Energy Transition

Materials Technology Day, June 17, 2022

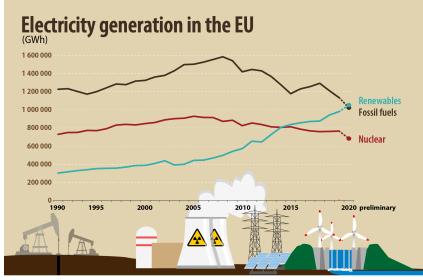
Shoshan Abrahami

Overview

- Introduction
- Case Study:
 - Permanent Magnets (PMs)
 - Li-ion Batteries
- Concluding Remarks

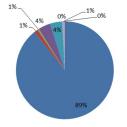
Climate change is one of the biggest challenges of this century

Political and Economical drivers


- Paris Climate Change Agreement
- UN Sustainable Development Goals
- EU Green Deal
 - 55% less CO₂ in 2030
 - Climate Neutral by 2050

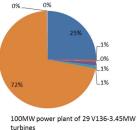
- Renewables (38 %) overtook fossil fuels (37%) in EU <u>electricity</u> generation for the first time in 2020, State of the Energy Union Report, EU commission
- In 2021, 39.1 GWh of electricity in EU came from renewable sources:
 - Solar (+30 %) to 11.4 GWh
 - Wind (+17 %) to 17.9 GWh
 - Biomass (+23 %) to 9.8 GWh

billion kWh

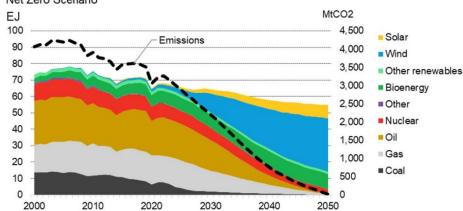


Material usage estimates in t/GW for different wind turbine types

	Material	Range	DD-EESG	DD-PMSG	GB-PMSG	GB-DFIG
Structural &	Concrete	243 500-413 000	369 000	243 000	413 000	355 000
	Steel	107 000-132 000	132 000	119 500	107 000	113 000
	Polymers	4 600	4 600	4 600	4 600	4 600
	Glass/carbon composites	7 700-8 400	8 100	8 100	8 400	7 700
	Aluminium (Al)	500-1 600	700	500	1 600	1 400
echnology	Boron (B)	0-6	0	6	1	0
-specific raw materials	Chromium (Cr)	470-580	525	525	580	470
	Copper (Cu)	950-5 000	5 000	3 000	950	1 400
	Dysprosium (Dy)	2-17	6	17	6	2
	Iron (cast) (Fe)	18 000-20 800	20 100	20 100	20 800	18 000
	Manganese (Mn)	780-800	790	790	800	780
	Molybdenum (Mo)	99-119	109	109	119	99
	Neodymium (Nd)	12-180	28	180	51	12
	Nickel (Ni)	240-440	340	240	440	430
	Praseodymium (Pr)	0-35	9	35	4	0
	Terbium (Tb)	0-7	1	7	1	0
	Zinc (Zn)	5 500	5 500	5 500	5 500	5 500



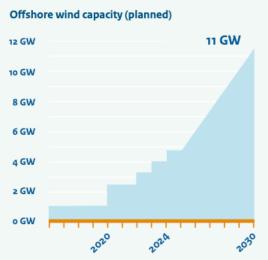
Steel and iron materials Aluminium and allovs Copper and alloys Polymer materials Glass and carbon composites Concrete Electronics/electrics Oil and coolant


V136-3.45MW (turbine only) Mass = 601 tonnes

Mass = 75236 tonnes

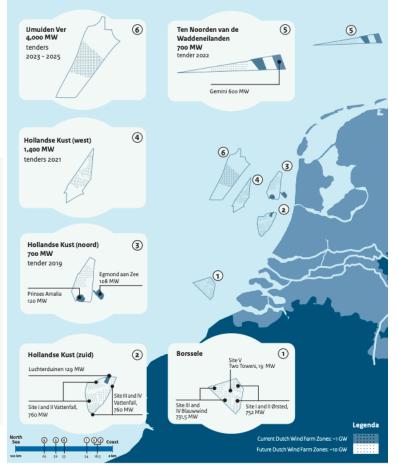
The challenge: Net-zero emissions

The increasing attention given to wind and solar energy throughout Europe will lead to a continuously growing demand for raw materials.


Net Zero Would Rely on Clean Power and Green Hydrogen

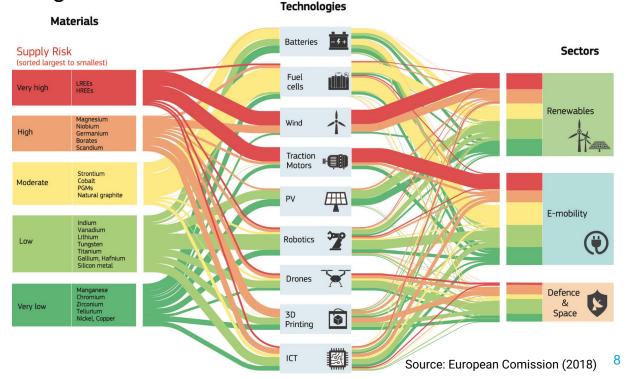
Total primary energy by fuel and energy-related CO2 emissions, Europe, Net Zero Scenario

Source: BloombergNEF. Note: The Net Zero Scenario sees all energy-consuming sectors decarbonize by 2050, largely through electrification and switching to green hydrogen.



Source: www.offshorewind.rvo.nl

Dutch Offshore Wind Farm Zones



7

The challenge: Net-zero emissions

Many critical metals are needed for the production of sustainable generation, transport and storage technologies

- Future raw materials demand may exceed availability!
 - (current) mining capacity
 - Supply risk (geopolitical)
 - value chains disruptions
- High purity requirements

What can WE do?

- 1. Reuse, Remanufacturing, Recycling: Make high-quality use of raw materials in existing products
- 2. Materials substitution: Replace fossil, critical and unsustainably produced raw materials with sustainably produced, renewable and generally available raw materials

Why Recycle?

Raw material use

- Depletion
- Destroying and polluting the environment

100%

80%

60%

40%

20%

0%

71%

- Current low capacity & quality
- Comes with high CO₂ emissions
- Economically & energetically expensive
- Supply security & geopolitical dependency
- Expected future waste piles
 Secondary resources

Materials Manufacturing Installation Operation & Maintenance

Dismanting & end-of-life

Illegal mining of REEs in China, (Packey, 2019)

Case Study: Permanent Magnets (PMs)

Applications of NdFeB PMs

Generator in wind turbines (400 kg magnet/MW) (1.2 ton for 3.0 MW capacity)

E-bikes (300-350 g)

Ear buds mobile (1.5 - 3 g) devices

Electric vehicles (EV/HEVs) (1.2 kg/car)

Computer HDDs (10-20 g)

Applications of NdFeB PMs

Critical for both renewable energy & electrification of transport

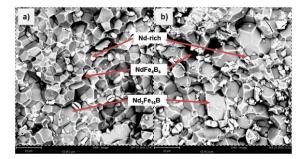
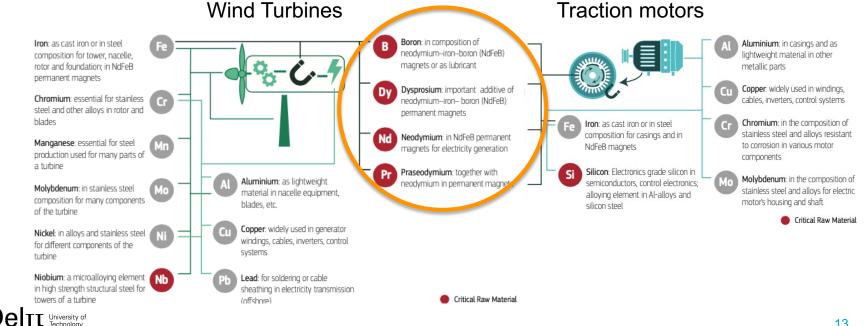
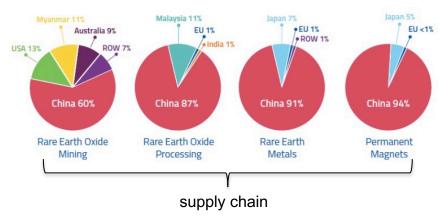




Fig. 5. Laptop (a) and desktop (b) microstructures and phases.

The challenge: Future Materials Supply

High economic importance + Supply risk

→REEs are on the **top** of EU list of critical raw materials!

EU rare earth magnet demand in the emerging wind energy and automotive markets

Source: Gauß et al. 2021. Rare Earth Magnets and Motors: A European Call for Action.

Technology options for REE PMs recycling

1) "Re-use" whenever it is possible

- Suitable for large magnets (e.g. wind turbines or EVs)
- No damage or corrosion
- Similar design!

2) "Direct alloy recycling" when "re-use" is not possible

- Re-sintering of scrap magnet
- Hydrogen decrepitation (HDDR)
- Suitable for dismantled and relative pure magnet scrap
- 3) Metallurgical "indirect recycling"
 - Contaminated scrap
 - Low REE concentration
 - Physical upgrading necessary
 - Combined metallurgical processes

Magnet-to-magnet route (no processing)

Magnet-to-alloy route (physical processing)

Magnet-to-metal route (chemical processing)

Selection criteria for a recycling route:

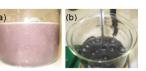
- Size of the magnet
- Complexity in the product
- REE concentration in magnet waste

EoL PMs recycling: Current

Computer HDDs:

Collection: mostly collected but go to the shredder with the PCs, or sometimes dismantled for separate shredding

Mechanical separation


- <u>Manual dismantling</u>: labor-intensive
- <u>Shredding</u>: NdFeB magnets stick to steel scrap and lost in the ferrous stream

Metallurgical refining: Chemical extraction routes

needed for complex & diluted scrap

Key tech. issues

Magnet separation from ferrous Complex impurities Fe – REE separation Minimized waste generation **Delft**



REE recovery from HDD shredder residue

Hydrometallurgical and pyro-hydro combined routes

Residue collection rate (70%) Relatively high REE concentration in the collected residue Physical upgrading of REE to ~20% (grinding – screening) Recovery rate: 95% of the total collected residue

Hydrometall. H_2SO_4 leaching: 97% Pyrometall. smelting: 100% REE – Fe separation Slag (25%REE) leaching: 60-70% recovery

Abrahami, et al., Mineral Processing and Extractive Metallurgy (Trans. Inst. Min. Metall. C), 2015, 124 (2), 106–115.

VALOMAG: EIT RM upscaling project

Low grade

NdFeB fraction

(BRGM)

iversity of

chnology

VALOMAG generic flowsheet Collection @suez (SUEZ) HDDR NdFeB NAME AND AND AND A DEC. Powder **Bonded Magnets** Manual (Koloktor) dismantling (SUEZ) Hydrogen Decrepitation / HDDR (CEA) Sorted HDD High grade NdFeB NdFeB Alloy (SUEZ) fraction Sintered 5 mm Magnets Demagnetisation (CEA) (CRM) **REE** oxide Fragmentation Hydrometallurgy and (BRGM) classification

eit

RawMaterials

Connecting matters

EoL PMs recycling: Future

Wind turbines & EV/HEVs

Collection: 100% due to regulations (extended producer responsibility)

Mechanical separation

WT: affordable manual dismantling, but challenging \rightarrow robots? demagnetization?

EVs: manual dismantling, but difficult liberation or to a shredder

Metallurgical processes:

- 1) Direct recycling
- 2) indirect recycling

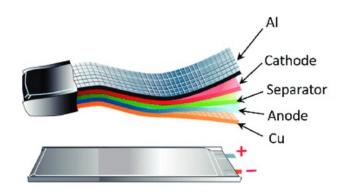
Key tech. issues

Magnet liberation from components Different coating impurities Comprehensive value recovery

> Bolt IPM rotor Source: Alan Walton, Birmingham University

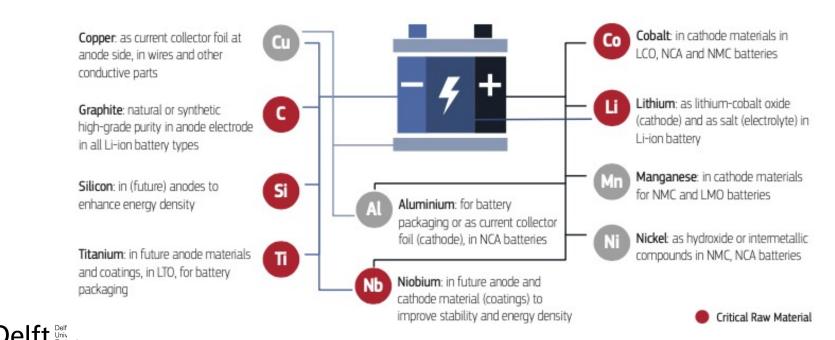
rotor; c) 2017 Tesla Model 3 IPM V rotor; d) 2016 Chevy

Case Study: Li-ion Batteries



Composition of spent LiBs

Main applications


- **e-mobility** (EVs, scooters, e-bikes, heavy construction equipment etc.)
- Portable tools & electronics
- Grid energy storage (solar, wind)

Component	Mass fractio n (wt%)	Commonly used materials		
Case	25%	Steel, plastics		
Cathode	27%	LiCoO ₂ , LiNiO ₂ , LiMn ₂ O ₄ , LiNi _x Mn _y Co _z O ₂ , LiFePO ₄		
Anode	17%	Graphite (C_6), $Li_4Ti_5O_{12}$		
Foils and current collectors	13%	Copper metal (Cu), Aluminium metal (Al)		
Electrolyte	10%	LiPF ₆ , LiBF ₄ , LiClO ₄ or LiSO ₂ , dissolved in polar org. solvents. (DMSO, propylene carbonate, ethylene carbonate)		
Separator 4%		Polypropylene (PP)		
Binder	4%	Polyvinylidene fluoride (PVDF)		

Materials: Li-ion Batteries

EoL LiBs: Current state

Collection: High collection rate (by legislation, EPR)

Separation: manual (safety)

- Challenging due to the large variety of battery designs, capacities, shape, size, and chemistries

Metallurgical refining:

- Large-scale operations are mostly pyrometallurgical →
- recycling specific components
 - steel casing, Al, Cu
 - economical elements: Co, Ni
 - Secondary "recoveries" (downcycling)
 - Challenges: complexity, diverse components, and available chemistries, financial viability is linked to specific elements (Co, Ni, Cu).
- No closed-loop recycling; Losses of electrolyte, Li, plastics/polymers, graphite
- Benefits
 - Robust processes, mixed scrap
 - Recovery of some important materials

EoL LiBs: Future

- Extensive recovery of materials (incl. Li, graphite, electrolyte)
- **Drivers**: New battery directive targets for collection, recovery and recycling content.
- Hydrochemical processes

Key tech. issues

- High recovery from mixed chemistries
- No economic value = no recycling (LiFePO₄)
- Complex impurities
- Minimized waste generation

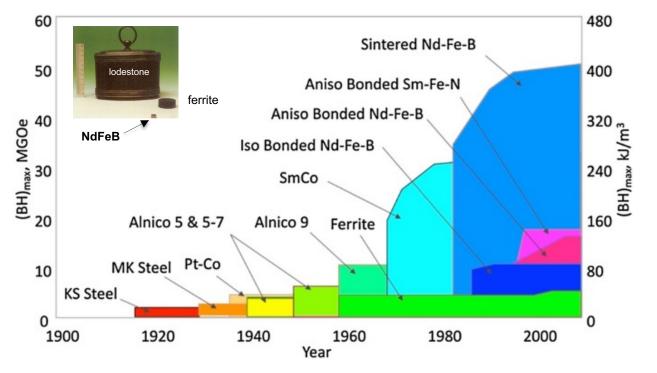
Concluding remarks

- The energy transition is material-intensive!
- Different strategies are needed to reach the environmental targets while assuring future materials supply
- Recycling critical materials is crucial to reaching environmental targets
- New products = new challenges, but also opportunities!
- Development of low-cost & efficient liberation and separation technologies
- Many available technology options, but no EoL wastes streams (yet) → market and economics of operation will decide!

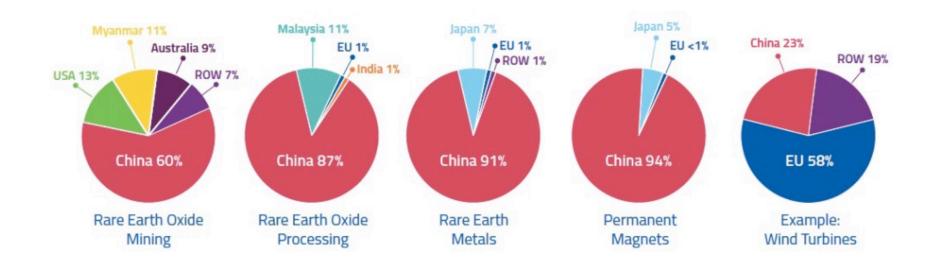
Thank you for your attention!

Questions?

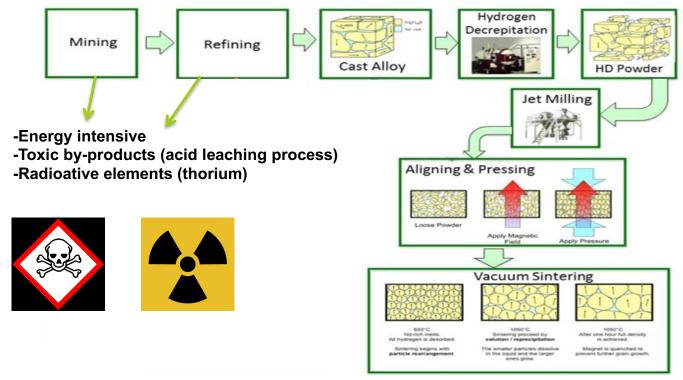
Contact details: Shoshan Abrahami S.T.Abrahami@tudelft.nl



Extra slides


Permanent Magnets (PMs)

Trends in the maximum energy product (BH_{max}) for commercially produced PMs


TU Delft Delft University of Technology

Rare-earth value chain

Nd-Fe-B manufacturing

Optical and electron microscopy

Scanning electron microscopy (SEM)

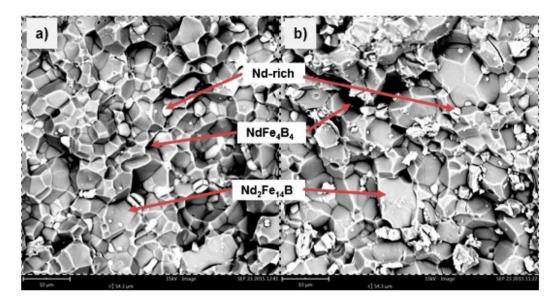


Fig. 5. Laptop (a) and desktop (b) microstructures and phases.

Magnet recycling from HDD Short route – hydrogen decripitation

